Pharmaceuticals (Jun 2024)

Novel Protein Biomarkers and Therapeutic Targets for Type 1 Diabetes and Its Complications: Insights from Summary-Data-Based Mendelian Randomization and Colocalization Analysis

  • Mingrui Zou,
  • Jichun Yang

DOI
https://doi.org/10.3390/ph17060766
Journal volume & issue
Vol. 17, no. 6
p. 766

Abstract

Read online

Millions of patients suffer from type 1 diabetes (T1D) and its associated complications. Nevertheless, the pursuit of a cure for T1D has encountered significant challenges, with a crucial impediment being the lack of biomarkers that can accurately predict the progression of T1D and reliable therapeutic targets for T1D. Hence, there is an urgent need to discover novel protein biomarkers and therapeutic targets, which holds promise for targeted therapy for T1D. In this study, we extracted summary-level data on 4907 plasma proteins from 35,559 Icelanders and 2923 plasma proteins from 54,219 UK participants as exposures. The genome-wide association study (GWAS) summary statistics on T1D and T1D with complications were obtained from the R9 release results from the FinnGen consortium. Summary-data-based Mendelian randomization (SMR) analysis was employed to evaluate the causal associations between the genetically predicted levels of plasma proteins and T1D-associated outcomes. Colocalization analysis was utilized to investigate the shared genetic variants between the exposure and outcome. Moreover, transcriptome analysis and a protein–protein interaction (PPI) network further illustrated the expression patterns of the identified protein targets and their interactions with the established targets of T1D. Finally, a Mendelian randomization phenome-wide association study evaluated the potential side effects of the identified core protein targets. In the primary SMR analysis, we identified 72 potential protein targets for T1D and its complications, and nine of them were considered crucial protein targets. Within the group were five risk targets and four protective targets. Backed by evidence from the colocalization analysis, the protein targets were classified into four tiers, with MANSC4, CTRB1, SIGLEC5 and MST1 being categorized as tier 1 targets. Delving into the DrugBank database, we retrieved 11 existing medications for T1D along with their therapeutic targets. The PPI network clarified the interactions among the identified potential protein targets and established ones. Finally, the Mendelian randomization phenome-wide association study corroborated MANSC4 as a reliable target capable of mitigating the risk of various forms of diabetes, and it revealed the absence of adverse effects linked to CTRB1, SIGLEC5 and MST1. This study unveiled many protein biomarkers and therapeutic targets for T1D and its complications. Such advancements hold great promise for the progression of drug development and targeted therapy for T1D.

Keywords