EURASIP Journal on Wireless Communications and Networking (Jul 2020)
Distributed algorithm under cooperative or competitive priority users in cognitive networks
Abstract
Abstract Opportunistic spectrum access (OSA) problem in cognitive radio (CR) networks allows a secondary (unlicensed) user (SU) to access a vacant channel allocated to a primary (licensed) user (PU). By finding the availability of the best channel, i.e., the channel that has the highest availability probability, a SU can increase its transmission time and rate. To maximize the transmission opportunities of a SU, various learning algorithms are suggested: Thompson sampling (TS), upper confidence bound (UCB), ε-greedy, etc. In our study, we propose a modified UCB version called AUCB (Arctan-UCB) that can achieve a logarithmic regret similar to TS or UCB while further reducing the total regret, defined as the reward loss resulting from the selection of non-optimal channels. To evaluate AUCB’s performance for the multi-user case, we propose a novel uncooperative policy for a priority access where the kth user should access the kth best channel. This manuscript theoretically establishes the upper bound on the sum regret of AUCB under the single or multi-user cases. The users thus may, after finite time slots, converge to their dedicated channels. It also focuses on the Quality of Service AUCB (QoS-AUCB) using the proposed policy for the priority access. Our simulations corroborate AUCB’s performance compared to TS or UCB.
Keywords