Communications Biology (Jun 2022)

Variational autoencoders learn transferrable representations of metabolomics data

  • Daniel P. Gomari,
  • Annalise Schweickart,
  • Leandro Cerchietti,
  • Elisabeth Paietta,
  • Hugo Fernandez,
  • Hassen Al-Amin,
  • Karsten Suhre,
  • Jan Krumsiek

DOI
https://doi.org/10.1038/s42003-022-03579-3
Journal volume & issue
Vol. 5, no. 1
pp. 1 – 9

Abstract

Read online

Variable autoencoders offer an alternative way to interrogate metabolomic data and identify meaningful, non-linear relationships.