IEEE Transactions on Neural Systems and Rehabilitation Engineering (Jan 2023)

Cortical Contributions to Imagined Power Grip Task: An EEG-Triggered TMS Study

  • Houmin Wang,
  • Huixian Zheng,
  • Yu Yang,
  • Kenneth N. K. Fong,
  • Jinyi Long

DOI
https://doi.org/10.1109/TNSRE.2023.3317813
Journal volume & issue
Vol. 31
pp. 3813 – 3822

Abstract

Read online

Previous studies have demonstrated that motor imagery leads to desynchronization in the alpha rhythm within the contralateral primary motor cortex. However, the underlying electrophysiological mechanisms responsible for this desynchronization during motor imagery remain unclear. To examine this question, we conducted an investigation using EEG in combination with noninvasive transcranial magnetic stimulation (TMS) during index finger abduction (ABD) and power grip imaginations. The TMS was administered employing diverse coil orientations to selectively stimulate corticospinal axons, aiming to target both early and late synaptic inputs to corticospinal neurons. TMS was triggered based on the alpha power levels, categorized in 20th percentile bins, derived from the individual alpha power distribution during the imagined tasks of ABD and power grip. Our analysis revealed negative correlations between alpha power and motor evoked potential (MEP) amplitude, as well as positive correlations with MEP latency across all coil orientations for each imagined task. Furthermore, we conducted functional network analysis in the alpha band to explore network connectivity during imagined index finger abduction and power grip tasks. Our findings indicate that network connections were denser in the fronto-parietal area during imagined ABD compared to power grip conditions. Moreover, the functional network properties demonstrated potential for effectively classifying between these two imagined tasks. These results provide functional evidence supporting the hypothesis that alpha oscillations may play a role in suppressing MEP amplitude and latency during imagined power grip. We propose that imagined ABD and power grip tasks may activate different populations and densities of axons at the cortical level.

Keywords