Defence Technology (Jan 2024)

Shock Raman spectra and structural transformation of powdered TKX-50 by the plate impact experiments combined with real-time Raman detection

  • Xue Yang,
  • Qijun Liu,
  • Yundan Gan,
  • Lei Yang,
  • Zhengtang Liu,
  • Fusheng Liu

Journal volume & issue
Vol. 31
pp. 158 – 162

Abstract

Read online

As an energetic material of great interest, the work capacity of dihydroxylammonium 5,5′-bistetrazole-1,1′-diolate (TKX-50) has been questioned recently. Although some research groups have explored the reasons for the low working ability of TKX-50, the plane impact experiment on powdered TKX-50 is obviously closer to the practical application, and the conclusions based on this are more guiding. Hence, we performed shock Hugoniot measurements of powdered TKX-50 between 5.65 and 16.29 GPa. The plane impact experiments of powdered TKX-50 were carried out and the shocked Raman spectra were collected. By Raman spectroscopy analysis, a new peak of powdered TKX-50 was found between 19.47 GPa and 24.96 GPa, which may be caused by decomposition/phase transition and was related with the low work capacity.

Keywords