Pharmaceutics (Jul 2023)

Development of a Novel Red Clay-Based Drug Delivery Carrier to Improve the Therapeutic Efficacy of Acyclovir in the Treatment of Skin Cancer

  • Arul Prakash Francis,
  • Aftab Ahmad,
  • Sri Durga Devi Nagarajan,
  • Harish Sundar Yogeeswarakannan,
  • Krishnaraj Sekar,
  • Shah Alam Khan,
  • Dhanalekshmi Unnikrishnan Meenakshi,
  • Asif Husain,
  • Mohammed A. Bazuhair,
  • Nandakumar Selvasudha

DOI
https://doi.org/10.3390/pharmaceutics15071919
Journal volume & issue
Vol. 15, no. 7
p. 1919

Abstract

Read online

Acyclovir (ACV) is a promising candidate for drug repurposing because of its potential to provide an effective treatment for viral infections and non-viral diseases, such as cancer, for which limited treatment options exist. However, its poor physicochemical properties limit its application. This study aimed to formulate and evaluate an ACV-loaded red clay nanodrug delivery system exhibiting an effective cytotoxicity. The study focused on the preparation of a complex between ACV and red clay (RC) using sucrose stearate (SS) (nanocomplex F1) as an immediate-release drug-delivery system for melanoma treatment. The synthesized nanocomplex, which had nanosized dimensions, a negative zeta potential and the drug release of approximately 85% after 3 h, was found to be promising. Characterization techniques, including FT-IR, XRD and DSC-TGA, confirmed the effective encapsulation of ACV within the nanocomplex and its stability due to intercalation. Cytotoxicity experiments conducted on melanoma cancer cell lines SK-MEL-3 revealed that the ACV release from the nanocomplex formulation F1 effectively inhibited the growth of melanoma cancer cells, with an IC50 of 25 ± 0.09 µg/mL. Additionally, ACV demonstrated a significant cytotoxicity at approximately 20 µg/mL in the melanoma cancer cell line, indicating its potential repurposing for skin cancer treatment. Based on these findings, it can be suggested that the RC-SS complex could be an effective drug delivery carrier for localized cancer therapy. Furthermore, the results of an in silico study suggested the addition of chitosan to the formulation for a more effective drug delivery. Energy and interaction analyses using various modules in a material studio demonstrated the high stability of the composite comprising red clay, sucrose stearate, chitosan and ACV. Thus, it could be concluded that the utilization of the red clay-based drug delivery system is a promising strategy to improve the effectiveness of targeted cancer therapy.

Keywords