Tehnički Vjesnik (Jan 2022)
Allocation of Electric Taxi Charging: Assessing the Layout of Charging Stations Based on Charging Frequency
Abstract
Recent decades have witnessed the growth of the electric vehicles (EVs) industry due to technological developments. To overcome emerging environmental issues, some metropolises, i.e., Beijing, have employed electric taxi systems, which require tremendous investments in charging stations. However, the supporting charging facilities for EVs are not complete, and in terms of layout, there is also a situation where some charging stations have long charging queues, but some are unvisited. To overcome these difficulties, this paper aims to establish a set of charging stations layout assessment models for the electric taxi based on charging frequency and put forward targeted policy suggestions to make the charging frequency of each station more balanced, to avoid resource waste and undersupply. In this paper, a mathematical model based on integer programming is established in conjunction with the workflow of the electric taxi; in the case study, simulations are performed using the Anylogic platform and the results are statistically analyzed; moreover, we use real-time data to assess the layout of charging stations near and within the Fourth Ring Road in Beijing. The modeling and simulation results show that there is an imbalance in the current charging stations layout in Beijing. More specifically, there is a problem with charging frequency of some stations, which is being too low and some too high. Also, the charging frequency of stations will vary with passenger distribution factors. We classify the studied charging stations into four categories according to their actual usage characteristics and provide specific analysis and optimization suggestions for the different categories. Based on the assessment system in this paper, we also carried out some policy suggestions for further layout optimization. The optimized layout has a more balanced charging frequency, and the variance of charging frequency is reduced largely.
Keywords