Abstract and Applied Analysis (Jan 2010)
On an Integral-Type Operator Acting between Bloch-Type Spaces on the Unit Ball
Abstract
Let 𝔹 denote the open unit ball of ℂn. For a holomorphic self-map φ of 𝔹 and a holomorphic function g in 𝔹 with g(0)=0, we define the following integral-type operator: Iφgf(z)=∫01ℜf(φ(tz))g(tz)(dt/t), z∈𝔹. Here ℜf denotes the radial derivative of a holomorphic function f in 𝔹. We study the boundedness and compactness of the operator between Bloch-type spaces ℬω and ℬμ, where ω is a normal weight function and μ is a weight function. Also we consider the operator between the little Bloch-type spaces ℬω,0 and ℬμ,0.