BMC Infectious Diseases (May 2009)
Ten years of antibiotic consumption in ambulatory care: Trends in prescribing practice and antibiotic resistance in Austria
Abstract
Abstract Background The primary aims of this study were (i) to determine the quantity and pattern of antibiotic use in Austria between 1998 and 2007 and (ii) to analyze antibiotic resistance rates in relation to antibiotic consumption in important clinical situations in order to provide data for empirical therapeutic regimens for key indications. Methods Consumption data and resistance data were obtained via the Austrian surveillance networks European Antimicrobial Resistance Surveillance System (EARSS) and European Surveillance on Antimicrobial Consumption (ESAC). The EARSS collects data on isolates from blood and cerebrospinal fluid obtained predominantly in the hospital setting. The Anatomical Therapeutic Chemical (ATC) classification and the Defined Daily Dose (DDD) measurement units were assigned to the data. The number of DDDs and packages per 1,000 inhabitants (PID) were used to calculate the level of antibiotic consumption. Antibiotic resistance was expressed in resistance rates, i.e., the percentage of resistant isolates compared to all isolates of one bacterial species. Results The overall antibiotic consumption measured in DIDs increased by 10% between 1998 and 2007, whereas PIDs decreased by 3%. The consumption of substances within the drug utilization 90% segment (measured in PID) increased for ciprofloxacin (+118.9), clindamycin (+76.3), amoxicillin/clavulanic acid (+61.9%), cefpodoxime (+31.6), azithromycin (+24.7); and decreased for erythromycin (-79.5%), trimethoprim (-56,1%), norfloxacin (-48.8%), doxycycline (-44.6), cefaclor (-35.1%), penicillin (-34.0%), amoxicillin (-22.5), minocycline (-21.9%) and clarithromycin (-9.9%). Starting in 2001, an increase in the percentage of invasive E. coli isolates resistant to aminopenicillins (from 35% to 53%), fluoroquinolones (from 7% to 25.5%) and third-generation cephalosporins (from 0% to 8.8%) was observed. The percentage of nonsusceptible or intermediate penicillin-resistant pneumococcal isolates remained stable over this time period at around 5%. For macrolides, the rate of resistant isolates increased from 5% to 12.8%, with a peak in 2005 at 14.7%. Conclusion The Austrian resistance data can not explain the fundamental change in prescribing practice. The more frequent use of ciprofloxacin has most likely contributed to rising resistance rates in E. coli in Austria. Penicillin G is still a highly effective substance for the treatment of invasive infections caused by pneumococci.