Quantum (Sep 2022)

Stability of invertible, frustration-free ground states against large perturbations

  • Sven Bachmann,
  • Wojciech De Roeck,
  • Brecht Donvil,
  • Martin Fraas

DOI
https://doi.org/10.22331/q-2022-09-08-793
Journal volume & issue
Vol. 6
p. 793

Abstract

Read online

A gapped ground state of a quantum spin system has a natural length scale set by the gap. This length scale governs the decay of correlations. A common intuition is that this length scale also controls the spatial relaxation towards the ground state away from impurities or boundaries. The aim of this article is to take a step towards a proof of this intuition. We assume that the ground state is frustration-free and invertible, i.e. it has no long-range entanglement. Moreover, we assume the property that we are aiming to prove for one specific kind of boundary condition; namely open boundary conditions. This assumption is also known as the "local topological quantum order" (LTQO) condition. With these assumptions we can prove stretched exponential decay away from boundaries or impurities, for any of the ground states of the perturbed system. In contrast to most earlier results, we do not assume that the perturbations at the boundary or the impurity are small. In particular, the perturbed system itself can have long-range entanglement.