Cell Reports
(Apr 2016)
The CoQH2/CoQ Ratio Serves as a Sensor of Respiratory Chain Efficiency
Adela Guarás,
Ester Perales-Clemente,
Enrique Calvo,
Rebeca Acín-Pérez,
Marta Loureiro-Lopez,
Claire Pujol,
Isabel Martínez-Carrascoso,
Estefanía Nuñez,
Fernando García-Marqués,
María Angeles Rodríguez-Hernández,
Ana Cortés,
Francisca Diaz,
Acisclo Pérez-Martos,
Carlos T. Moraes,
Patricio Fernández-Silva,
Aleksandra Trifunovic,
Plácido Navas,
Jesús Vazquez,
Jose A. Enríquez
Affiliations
Adela Guarás
Departamento de Desarrollo y Reparación Cardiovascular, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 28029, Spain
Ester Perales-Clemente
Departamento de Desarrollo y Reparación Cardiovascular, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 28029, Spain
Enrique Calvo
Laboratorio de Proteómica Cardiovascular, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 28029, Spain
Rebeca Acín-Pérez
Departamento de Desarrollo y Reparación Cardiovascular, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 28029, Spain
Marta Loureiro-Lopez
Laboratorio de Proteómica Cardiovascular, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 28029, Spain
Claire Pujol
Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
Isabel Martínez-Carrascoso
Departamento de Desarrollo y Reparación Cardiovascular, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 28029, Spain
Estefanía Nuñez
Laboratorio de Proteómica Cardiovascular, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 28029, Spain
Fernando García-Marqués
Laboratorio de Proteómica Cardiovascular, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 28029, Spain
María Angeles Rodríguez-Hernández
Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC, Sevilla 41013, Spain
Ana Cortés
Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC, Sevilla 41013, Spain
Francisca Diaz
Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
Acisclo Pérez-Martos
Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza 50009, Spain
Carlos T. Moraes
Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
Patricio Fernández-Silva
Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza 50009, Spain
Aleksandra Trifunovic
Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
Plácido Navas
Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC, Sevilla 41013, Spain
Jesús Vazquez
Laboratorio de Proteómica Cardiovascular, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 28029, Spain
Jose A. Enríquez
Departamento de Desarrollo y Reparación Cardiovascular, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 28029, Spain
DOI
https://doi.org/10.1016/j.celrep.2016.03.009
Journal volume & issue
Vol. 15,
no. 1
pp.
197
– 209
Abstract
Read online
Electrons feed into the mitochondrial electron transport chain (mETC) from NAD- or FAD-dependent enzymes. A shift from glucose to fatty acids increases electron flux through FAD, which can saturate the oxidation capacity of the dedicated coenzyme Q (CoQ) pool and result in the generation of reactive oxygen species. To prevent this, the mETC superstructure can be reconfigured through the degradation of respiratory complex I, liberating associated complex III to increase electron flux via FAD at the expense of NAD. Here, we demonstrate that this adaptation is driven by the ratio of reduced to oxidized CoQ. Saturation of CoQ oxidation capacity induces reverse electron transport from reduced CoQ to complex I, and the resulting local generation of superoxide oxidizes specific complex I proteins, triggering their degradation and the disintegration of the complex. Thus, CoQ redox status acts as a metabolic sensor that fine-tunes mETC configuration in order to match the prevailing substrate profile.
WeChat QR code
Close