Symmetry (Jul 2022)

A Differential Operator Associated with <i>q</i>-Raina Function

  • Adel A. Attiya,
  • Rabha W. Ibrahim,
  • Abeer M. Albalahi,
  • Ekram E. Ali,
  • Teodor Bulboacă

DOI
https://doi.org/10.3390/sym14081518
Journal volume & issue
Vol. 14, no. 8
p. 1518

Abstract

Read online

The topics studied in the geometric function theory of one variable functions are connected with the concept of Symmetry because for some special cases the analytic functions map the open unit disk onto a symmetric domain. Thus, if all the coefficients of the Taylor expansion at the origin are real numbers, then the image of the open unit disk is a symmetric domain with respect to the real axis. In this paper, we formulate the q-differential operator associated with the q-Raina function using quantum calculus, that is the so-called Jacksons’ calculus. We establish a new subclass of analytic functions in the unit disk by using this newly developed operator. The theory of differential subordination inspired our approach; therefore, we geometrically explore the most popular properties of this new operator: subordination properties, coefficient bounds, and the Fekete-Szegő problem. As special cases, we highlight certain well-known corollaries of our primary findings.

Keywords