Discrete Dynamics in Nature and Society (Jan 2013)
Wirtinger-Type Inequality and the Stability Analysis of Delayed Lur'e System
Abstract
This paper proposes a new delay-depended stability criterion for a class of delayed Lur'e systems with sector and slope restricted nonlinear perturbation. The proposed method employs an improved Wirtinger-type inequality for constructing a new Lyapunov functional with triple integral items. By using the convex expression of the nonlinear perturbation function, the original nonlinear Lur'e system is transformed into a linear uncertain system. Based on the Lyapunov stable theory, some novel delay-depended stability criteria for the researched system are established in terms of linear matrix inequality technique. Three numerical examples are presented to illustrate the validity of the main results.