Materials (Jun 2023)

Synthesis of Mesoporous and Hollow SiO<sub>2</sub>@ Eu(TTA)<sub>3</sub>phen with Enhanced Fluorescence Properties

  • Zhiheng Wang,
  • Xiaoli Hu,
  • Yinqi Yang,
  • Wei Wang,
  • Yao Wang,
  • Xuezhong Gong,
  • Caiyun Geng,
  • Jianguo Tang

DOI
https://doi.org/10.3390/ma16134501
Journal volume & issue
Vol. 16, no. 13
p. 4501

Abstract

Read online

Lanthanide ions are extensively utilized in optoelectronic materials, owing to their narrow emission bandwidth, prolonged lifetime, and elevated fluorescence quantum yield. Inorganic non-metallic materials commonly serve as host matrices for lanthanide complexes, posing noteworthy challenges regarding loading quantity and fluorescence performance stability post-loading. In this investigation, an enhanced Stöber method was employed to synthesize mesoporous hollow silica, and diverse forms of SiO2@Eu(TTA)3phen (S@Eu) were successfully prepared. Transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS), Fourier-transform infrared (FTIR) spectroscopy, and X-ray photoelectron spectroscopy (XPS) outcomes revealed the effective binding of silica with Eu(TTA)3phen through both physical adsorption and chemical bonding. This includes the formation of Si-O-C bonds between silica and the ligand, as well as Si-O-Eu bonds between silica and europium ions. Fluorescence tests demonstrated that the mesoporous SiO2@Eu(TTA)3phen(MS@Eu) composite exhibited the highest fluorescence intensity among the three structured silica composites, with a notable enhancement of 46.60% compared to the normal SiO2@Eu(TTA)3phen composite. The Brunauer–Emmett–Teller (BET) analysis indicated that the specific surface area plays a crucial role in influencing the fluorescence intensity of SiO2@Eu(TTA)3phen, whereby the prepared mesoporous hollow silica further elevated the fluorescence intensity by 61.49%. Moreover, SiO2@Eu(TTA)3phen demonstrated 11.11% greater cyclic stability, heightened thermal stability, and enhanced alkaline resistance relative to SiO2@Eu(TTA)3phen.

Keywords