Engineering Reports (Dec 2024)

Modeling and simulation of the control system for the plane mirror rotating interferometer

  • Yusheng Qin,
  • Xiangxian Li,
  • Xin Han,
  • Jingjing Tong,
  • Minguang Gao

DOI
https://doi.org/10.1002/eng2.12942
Journal volume & issue
Vol. 6, no. 12
pp. n/a – n/a

Abstract

Read online

Abstract To solve the problem of optical path difference velocity (OPDV) stability in the Fourier spectrometer, a Cerebellar Model Articulation Controller‐Proportional‐Integral‐Derivative (CMAC‐PID) composite control strategy is proposed. The relationship between the angular velocity of the rotary‐type voice coil motor (RT‐VCM) and the OPDV was studied, along with a mathematical model of the parallel rotating mirror interferometer system. CMAC‐PID is designed and simulated on this basis to suppress the disturbance of nonlinear factors in the system model. The simulation results demonstrate that the steady‐state fluctuation error of the CMAC‐PID controller is 90.1% less than that of the PID controller. The experimental results indicate that compared to the PID controller, the CMAC‐PID controller improves the stability of the OPDV by 1.25%, which means that time‐varying disturbances are effectively suppressed.

Keywords