Scientific Reports (May 2024)

Trimebutine prevents corneal inflammation in a rat alkali burn model

  • Hitoshi Goto,
  • Takeshi Arima,
  • Akira Takahashi,
  • Yutaro Tobita,
  • Yuji Nakano,
  • Etsuko Toda,
  • Akira Shimizu,
  • Fumiki Okamoto

DOI
https://doi.org/10.1038/s41598-024-61112-4
Journal volume & issue
Vol. 14, no. 1
pp. 1 – 12

Abstract

Read online

Abstract Alkaline burns to the cornea lead to loss of corneal transparency, which is essential for normal vision. We used a rat corneal alkaline burn model to investigate the effect of ophthalmic trimebutine solution on healing wounds caused by alkaline burns. Trimebutine, an inhibitor of the high-mobility group box 1-receptor for advanced glycation end products, when topically applied to the burned cornea, suppressed macrophage infiltration in the early phase and neutrophil infiltration in the late phase at the wound site. It also inhibited neovascularization and myofibroblast development in the late phase. Furthermore, trimebutine effectively inhibited interleukin-1β expression in the injured cornea. It reduced scar formation by decreasing the expression of type III collagen. These findings suggest that trimebutine may represent a novel therapeutic strategy for corneal wounds, not only through its anti-inflammatory effects but also by preventing neovascularization.

Keywords