Advanced Science (Apr 2020)

Achieving 21% External Quantum Efficiency for Nondoped Solution‐Processed Sky‐Blue Thermally Activated Delayed Fluorescence OLEDs by Means of Multi‐(Donor/Acceptor) Emitter with Through‐Space/‐Bond Charge Transfer

  • Xujun Zheng,
  • Rongjuan Huang,
  • Cheng Zhong,
  • Guohua Xie,
  • Weimin Ning,
  • Manli Huang,
  • Fan Ni,
  • Fernando B. Dias,
  • Chuluo Yang

DOI
https://doi.org/10.1002/advs.201902087
Journal volume & issue
Vol. 7, no. 7
pp. n/a – n/a

Abstract

Read online

Abstract Although numerous thermally activated delayed fluorescence (TADF) organic light‐emitting diodes (OLEDs) have been demonstrated, efficient blue or even sky‐blue TADF‐based nondoped solution‐processed devices are still very rare. Herein, through‐space charge transfer (TSCT) and through‐bond charge transfer (TBCT) effects are skillfully incorporated, as well as the multi‐(donor/acceptor) characteristic, into one molecule. The former allows this material to show small singlet–triplet energy splitting (ΔEST) and a high transition dipole moment. The latter, on the one hand, further lights up multichannel reverse intersystem crossing (RISC) to increase triplet exciton utilization via degenerating molecular orbitals. On the other hand, the nature of the molecular twisted structure effectively suppresses intermolecular packing to obtain high photoluminescence quantum yield (PLQY) in neat flims. Consequently, using this design strategy, T‐CNDF‐T‐tCz containing three donor and three acceptor units, successfully realizes a small ΔEST (≈0.03 eV) and a high PLQY (≈0.76) at the same time; hence the nondoped solution‐processed sky‐blue TADF‐OLED displays record‐breaking efficiency among the solution process‐based nondoped sky‐blue OLEDs, with high brightness over 5200 cd m−2 and external quantum efficiency up to 21.0%.

Keywords