Agriculture (Jan 2025)

WED-YOLO: A Detection Model for Safflower Under Complex Unstructured Environment

  • Zhenguo Zhang,
  • Yunze Wang,
  • Peng Xu,
  • Ruimeng Shi,
  • Zhenyu Xing,
  • Junye Li

DOI
https://doi.org/10.3390/agriculture15020205
Journal volume & issue
Vol. 15, no. 2
p. 205

Abstract

Read online

Accurate safflower recognition is a critical research challenge in the field of automated safflower harvesting. The growing environment of safflowers, including factors such as variable weather conditions in unstructured environments, shooting distances, and diverse morphological characteristics, presents significant difficulties for detection. To address these challenges and enable precise safflower target recognition in complex environments, this study proposes an improved safflower detection model, WED-YOLO, based on YOLOv8n. Firstly, the original bounding box loss function is replaced with the dynamic non-monotonic focusing mechanism Wise Intersection over Union (WIoU), which enhances the model’s bounding box fitting ability and accelerates network convergence. Then, the upsampling module in the network’s neck is substituted with the more efficient and versatile dynamic upsampling module, DySample, to improve the precision of feature map upsampling. Meanwhile, the EMA attention mechanism is integrated into the C2f module of the backbone network to strengthen the model’s feature extraction capabilities. Finally, a small-target detection layer is incorporated into the detection head, enabling the model to focus on small safflower targets. The model is trained and validated using a custom-built safflower dataset. The experimental results demonstrate that the improved model achieves Precision (P), Recall (R), mean Average Precision (mAP), and F1 score values of 93.15%, 86.71%, 95.03%, and 89.64%, respectively. These results represent improvements of 2.9%, 6.69%, 4.5%, and 6.22% over the baseline model. Compared with Faster R-CNN, YOLOv5, YOLOv7, and YOLOv10, the WED-YOLO achieved the highest mAP value. It outperforms the module mentioned by 13.06%, 4.85%, 4.86%, and 4.82%, respectively. The enhanced model exhibits superior precision and lower miss detection rates in safflower recognition tasks, providing a robust algorithmic foundation for the intelligent harvesting of safflowers.

Keywords