PLoS ONE (Jan 2023)
Modelling Red-Crowned Parrot (Psittaciformes: Amazona viridigenalis [Cassin, 1853]) distributions in the Rio Grande Valley of Texas using elevation and vegetation indices and their derivatives.
Abstract
Texas Rio Grande Valley Red-crowned Parrots (Psittaciformes: Amazona viridigenalis [Cassin, 1853]) primarily occupy vegetated urban rather than natural areas. We investigated the utility of raw vegetation indices and their derivatives as well as elevation in modelling the Red-crowned parrot's general use, nest site, and roost site habitat distributions. A feature selection algorithm was employed to create and select an ensemble of fine-scale, top-ranked MaxEnt models from optimally-sized, decorrelated subsets of four to seven of 199 potential variables. Variables were ranked post hoc by frequency of appearance and mean permutation importance in top-ranked models. Our ensemble models accurately predicted the three distributions of interest ([Formula: see text] Area Under the Curve [AUC] = 0.904-0.969). Top-ranked variables for different habitat distribution models included: (a) general use-percent cover of preferred ranges of entropy texture of Normalized Difference Vegetation Index (NDVI) values, entropy and contrast textures of NDVI, and elevation; (b) nest site-entropy textures of NDVI and Green-Blue NDVI, and percent cover of preferred range of entropy texture of NDVI values; (c) roost site-percent cover of preferred ranges of entropy texture of NDVI values, contrast texture of NDVI, and entropy texture of Green-Red Normalized Difference Index. Texas Rio Grande Valley Red-crowned Parrot presence was associated with urban areas with high heterogeneity and randomness in the distribution of vegetation and/or its characteristics (e.g., arrangement, type, structure). Maintaining existing preferred vegetation types and incorporating them into new developments should support the persistence of Red-crowned Parrots in southern Texas.