Heliyon (Jul 2023)

New drug target identification in Vibrio vulnificus by subtractive genome analysis and their inhibitors through molecular docking and molecular dynamics simulations

  • Bader S. Alotaibi,
  • Amar Ajmal,
  • Mohammed Ageeli Hakami,
  • Arif Mahmood,
  • Abdul Wadood,
  • Junjian Hu

Journal volume & issue
Vol. 9, no. 7
p. e17650

Abstract

Read online

Vibrio vulnificus is a rod shape, Gram-negative bacterium that causes sepsis (with a greater than 50% mortality rate), necrotizing fasciitis, gastroenteritis, skin, and soft tissue infection, wound infection, peritonitis, meningitis, pneumonia, keratitis, and arthritis. Based on pathogenicity V. vulnificus is categorized into three biotypes. Type 1 and type 3 cause diseases in humans while biotype 2 causes diseases in eel and fish. Due to indiscriminate use of antibiotics V. vulnificus has developed resistance to many antibiotics so curing is dramatically a challenge. V. vulnificus is resistant to cefazolin, streptomycin, tetracycline, aztreonam, tobramycin, cefepime, and gentamycin. Subtractive genome analysis is the most effective method for drug target identification. The method is based on the subtraction of homologous proteins from both pathogen and host. By this process set of proteins present only in the pathogen and perform essential functions in the pathogen can be identified. The entire proteome of Vibrio vulnificus strain ATCC 27562 was reduced step by step to a single protein predicted as the drug target. AlphaFold2 is one of the applications of deep learning algorithms in biomedicine and is correctly considered the game changer in the field of structural biology. Accuracy and speed are the major strength of AlphaFold2. In the PDB database, the crystal structure of the predicted drug target was not present, therefore the Colab notebook was used to predict the 3D structure by the AlphaFold2, and subsequently, the predicted model was validated. Potent inhibitors against the new target were predicted by virtual screening and molecular docking study. The most stable compound ZINC01318774 tightly attaches to the binding pocket of bisphosphoglycerate-independent phosphoglycerate mutase. The time-dependent molecular dynamics simulation revealed compound ZINC01318774 was superior as compared to the standard drug tetracycline in terms of stability. The availability of V. vulnificus strain ATCC 27562 has allowed in silico identification of drug target which will provide a base for the discovery of specific therapeutic targets against Vibrio vulnificus.

Keywords