Digital Communications and Networks (Aug 2018)

A new protocol for concurrently allocating licensed spectrum to underlay cognitive users

  • Sabyasachi Chatterjee,
  • Prabir Banerjee,
  • Mita Nasipuri

Journal volume & issue
Vol. 4, no. 3
pp. 200 – 208

Abstract

Read online

Cognitive radio technology makes efficient use of the valuable radio frequency spectrum in a non-interfering manner to solve the problem of spectrum scarcity. This paper aims to design a scheme for the concurrent use of licensed frequencies by Underlay Cognitive Users (UCUs). We develop a new receiver-initiated Medium Access Control (MAC) protocol to facilitate the selections of alternative reliable carrier frequencies. A circuit is designed to establish reliable carrier selections based on the Received Signal Strength Indicator (RSSI) at the receiving end. Based on both packet-level simulations and various performance parameters, a comparison is carried out among conventional techniques, including the Multiple Access with Collision Avoidance (MACA) and MACA by invitation(MACA-BI) techniques, and our scheme. The simulated results demonstrate that when conventional techniques are used, the system overhead time increases from 0.5 s on the first attempt to 16.5 s on the sixth attempt. In the proposed scheme under the same failure condition, overhead time varies from 0.5 s to 2 s. This improvement is due to the complete elimination of the exponential waiting time that occurs during failed transmissions. An average efficiency of 60% is achieved with our scheme while only 43% and 34% average efficiencies are achieved with the MACA and MACA-BI techniques, respectively. The throughput performance of our scheme on the fourth attempt is 7 Mbps, whereas for the MACA and MACA-BI protocols, it is 1.9 Mbps and 2.2 Mbps respectively. Keywords: Exponential back-off time, Interference temperature limit, Medium-access control protocol, Received signal strength indicator, Underlay cognitive user