Categories and General Algebraic Structures with Applications (Jan 2018)

On the pointfree counterpart of the local definition of classical continuous maps

  • Bernhard Banaschewski

Journal volume & issue
Vol. 8, no. 1
pp. 1 – 8

Abstract

Read online

The familiar classical result that a continuous map from a space $X$ to a space $Y$ can be defined by giving continuous maps $varphi_U: U to Y$ on each member $U$ of an open cover ${mathfrak C}$ of $X$ such that $varphi_Umid U cap V = varphi_V mid U cap V$ for all $U,V in {mathfrak C}$ was recently shown to have an exact analogue in pointfree topology, and the same was done for the familiar classical counterpart concerning finite closed covers of a space $X$ (Picado and Pultr [4]). This note presents alternative proofs of these pointfree results which differ from those of [4] by treating the issue in terms of frame homomorphisms while the latter deals with the dual situation concerning localic maps. A notable advantage of the present approach is that it also provides proofs of the analogous results for some significant variants of frames which are not covered by the localic arguments.

Keywords