International Journal of Molecular Sciences (Dec 2015)

DAG/PKCδ and IP3/Ca2+/CaMK IIβ Operate in Parallel to Each Other in PLCγ1-Driven Cell Proliferation and Migration of Human Gastric Adenocarcinoma Cells, through Akt/mTOR/S6 Pathway

  • Lianzhi Dai,
  • Luhua Zhuang,
  • Bingchang Zhang,
  • Fen Wang,
  • Xiaolei Chen,
  • Chun Xia,
  • Bing Zhang

DOI
https://doi.org/10.3390/ijms161226116
Journal volume & issue
Vol. 16, no. 12
pp. 28510 – 28522

Abstract

Read online

Phosphoinositide specific phospholipase Cγ (PLCγ) activates diacylglycerol (DAG)/protein kinase C (PKC) and inositol 1,4,5-trisphosphate (IP3)/Ca2+/calmodulin-dependent protein kinase II (CaMK II) axes to regulate import events in some cancer cells, including gastric adenocarcinoma cells. However, whether DAG/PKCδ and IP3/Ca2+/CaMK IIβ axes are simultaneously involved in PLCγ1-driven cell proliferation and migration of human gastric adenocarcinoma cells and the underlying mechanism are not elucidated. Here, we investigated the role of DAG/PKCδ or CaMK IIβ in PLCγ1-driven cell proliferation and migration of human gastric adenocarcinoma cells, using the BGC-823 cell line. The results indicated that the inhibition of PKCδ and CaMK IIβ could block cell proliferation and migration of BGC-823 cells as well as the effect of inhibiting PLCγ1, including the decrease of cell viability, the increase of apoptotic index, the down-regulation of matrix metalloproteinase (MMP) 9 expression level, and the decrease of cell migration rate. Both DAG/PKCδ and CaMK IIβ triggered protein kinase B (Akt)/mammalian target of rapamycin (mTOR)/S6 pathway to regulate protein synthesis. The data indicate that DAG/PKCδ and IP3/Ca2+/CaMK IIβ operate in parallel to each other in PLCγ1-driven cell proliferation and migration of human gastric adenocarcinoma cells through Akt/mTOR/S6 pathway, with important implication for validating PLCγ1 as a molecular biomarker in early gastric cancer diagnosis and disease surveillance.

Keywords