Frontiers in Materials (Nov 2018)
Superconducting Ti15Zr15Nb35Ta35 High-Entropy Alloy With Intermediate Electron-Phonon Coupling
Abstract
The body-centered cubic (BCC) Ti15Zr15Nb35Ta35 high-entropy alloy showed superconducting behavior at around 8 K. The electronic specific heat coefficient γ and the lattice specific heat coefficient β were determined to be γ = 9.3 ± 0.1 mJ/mol K2 and β = 0.28 ± 0.01 mJ/mol K4, respectively. It was found that the electronic specific heat Ces does follow the exponential behavior of the Bardeen-Cooper-Schrieffer (BCS) theory. Nevertheless, the specific heat jump (ΔC/γTc) at the superconducting transition temperature which was determined to be 1.71 deviates appreciably from that for a weak electron-phonon coupling BCS superconductor. Within the framework of the strong-coupled theory, our analysis suggests that theTi15Zr15Nb35Ta35 HEA is an intermediate electron-phonon coupled BCS-type superconductor.
Keywords