Applied Sciences (Mar 2023)

A Novel Small Target Detection Strategy: Location Feature Extraction in the Case of Self-Knowledge Distillation

  • Gaohua Liu,
  • Junhuan Li,
  • Shuxia Yan,
  • Rui Liu

DOI
https://doi.org/10.3390/app13063683
Journal volume & issue
Vol. 13, no. 6
p. 3683

Abstract

Read online

Small target detection has always been a hot and difficult point in the field of target detection. The existing detection network has a good effect on conventional targets but a poor effect on small target detection. The main challenge is that small targets have few pixels and are widely distributed in the image, so it is difficult to extract effective features, especially in the deeper neural network. A novel plug-in to extract location features of the small target in the deep network was proposed. Because the deep network has a larger receptive field and richer global information, it is easier to establish global spatial context mapping. The plug-in named location feature extraction establishes the spatial context mapping in the deep network to obtain the global information of scattered small targets in the deep feature map. Additionally, the attention mechanism can be used to strengthen attention to the spatial information. The comprehensive effect of the above two can be utilized to realize location feature extraction in the deep network. In order to improve the generalization of the network, a new self-distillation algorithm was designed for pre-training that could work under self-supervision. The experiment was conducted on the public datasets (Pascal VOC and Printed Circuit Board Defect dataset) and the self-made dedicated small target detection dataset, respectively. According to the diagnosis of the false-positive error distribution, the location error was significantly reduced, which proved the effectiveness of the plug-in proposed for location feature extraction. The mAP results can prove that the detection effect of the network applying the location feature extraction strategy is much better than the original network.

Keywords