Advances in Materials Science and Engineering (Jan 2017)
Cubic Function-Based Bayesian Dynamic Linear Prediction Approach of Bridge Extreme Stress
Abstract
In structural health monitoring (SHM) field, the structural stress prediction and assessment are the research bottleneck. To reasonably and dynamically predict structural extreme stress based on the time-variant monitored data, the objectives of this paper are to present (a) cubic function-based Bayesian dynamic linear models (BDLM) about monitored extreme stress, (b) choosing method of optimum probability distribution functions about initial stress state, (c) monitoring mechanism of the optimum BDLM, and (d) an effective way of taking advantage of BDLM to incorporate the time-variant monitored data into structural extreme stress prediction. The monitored data of an existing bridge is adopted to illustrate the feasibility and application of the proposed models and procedures.