Metamaterial unipolar quantum optoelectronics for mid-infrared free-space optics
T. Bonazzi,
H. Dely,
P. Didier,
D. Gacemi,
B. Fix,
M. Beck,
J. Faist,
A. Harouri,
I. Sagnes,
F. Grillot,
A. Vasanelli,
C. Sirtori
Affiliations
T. Bonazzi
Laboratoire de Physique de l’ENS, Département de Physique, École Normale Supérieure, Université PSL, Sorbonne Université, Université Paris Cité, CNRS, 75005 Paris, France
H. Dely
Laboratoire de Physique de l’ENS, Département de Physique, École Normale Supérieure, Université PSL, Sorbonne Université, Université Paris Cité, CNRS, 75005 Paris, France
P. Didier
Télécom Paris, Institut Polytechnique de Paris, LTCI, Palaiseau, France
D. Gacemi
Laboratoire de Physique de l’ENS, Département de Physique, École Normale Supérieure, Université PSL, Sorbonne Université, Université Paris Cité, CNRS, 75005 Paris, France
B. Fix
DOTA, ONERA, Université Paris-Saclay, F-91123 Palaiseau, France
M. Beck
Institute for Quantum Electronics, ETH Zürich, CH-8093 Zürich, Switzerland
J. Faist
Institute for Quantum Electronics, ETH Zürich, CH-8093 Zürich, Switzerland
A. Harouri
Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies, Palaiseau 91120, France
I. Sagnes
Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies, Palaiseau 91120, France
F. Grillot
Télécom Paris, Institut Polytechnique de Paris, LTCI, Palaiseau, France
A. Vasanelli
Laboratoire de Physique de l’ENS, Département de Physique, École Normale Supérieure, Université PSL, Sorbonne Université, Université Paris Cité, CNRS, 75005 Paris, France
C. Sirtori
Laboratoire de Physique de l’ENS, Département de Physique, École Normale Supérieure, Université PSL, Sorbonne Université, Université Paris Cité, CNRS, 75005 Paris, France
Free-space optical communications in the mid-infrared transparency windows (4–5 and 8–14 μm wavelength regions) is emerging as a viable solution for high bitrate data transmission. Unipolar quantum optoelectronics is the technology of choice for data communication in this wavelength region, thanks to the high frequency response of detectors and modulators. In this work, it is demonstrated that the performances of these devices can be substantially enhanced by embedding them into metamaterials. It is also shown that metamaterials have to be engineered differently in detectors than in modulators, as the role of light–matter interaction must be tuned adequately in the two devices. Metamaterial-enhanced performances allow the realization of data transmission with a record rate of 68 Gbit/s, while ensuring robustness and consistency, as it should be for real-world applications. These findings underscore the promising role of metamaterial-enhanced unipolar devices in advancing free-space optical communication systems.