Jixie qiangdu (Jan 2019)

STRUCTURAL STRENGTH AND RELIABILITY ANALYSIS OF MW SCALE WIND TURBINE’S MAIN SHAFT

  • ZHOU XinJian,
  • LI GuangXing,
  • LI ZhiQiang

Journal volume & issue
Vol. 41
pp. 349 – 355

Abstract

Read online

The parametric FE model of the main shaft for a 1.5 MW doubly-fed wind turbine was established with parametric language APDL of ANSYS in a command stream file. The structural strength of the main shaft under the 16 ultimate load conditions was checked according to the working load data. The results show that the maximum working stress 237.086 MPa found at dlc2.1 b is less than the permissible stress. The main shaft meets the requirement of static strength. In consideration of the randomness of the load parameters, the size parameters and the mechanical property parameters in practical situations, the static strength reliability analysis of the main shaft was executed by professional probabilistic analysis software NESSUS and ANSYS joint simulation. The results show that the structural reliability of the main shaft is 0.999 224 4, which is slightly lower than the required 0.999 9. According to the results of sensitivity analysis, improvement of the structural reliability can be achieved by increasing the mean of yield strength, decreasing the standard deviation of yield strength or increasing the mean of the size parameter R2.

Keywords