Nutrients (May 2020)

Apple Flavonols Mitigate Adipocyte Inflammation and Promote Angiogenic Factors in LPS- and Cobalt Chloride-Stimulated Adipocytes, in Part by a Peroxisome Proliferator-Activated Receptor-γ-Dependent Mechanism

  • Danyelle M. Liddle,
  • Meaghan E. Kavanagh,
  • Amanda J. Wright,
  • Lindsay E. Robinson

DOI
https://doi.org/10.3390/nu12051386
Journal volume & issue
Vol. 12, no. 5
p. 1386

Abstract

Read online

Adipose tissue (AT) expansion induces local hypoxia, a key contributor to the chronic low-grade inflammation that drives obesity-associated disease. Apple flavonols phloretin (PT) and phlorizin (PZ) are suggested anti-inflammatory molecules but their effectiveness in obese AT is inadequately understood. Using in vitro models designed to reproduce the obese AT microenvironment, 3T3-L1 adipocytes were cultured for 24 h with PT or PZ (100 μM) concurrent with the inflammatory stimulus lipopolysaccharide (LPS; 10 ng/mL) and/or the hypoxia mimetic cobalt chloride (CoCl2; 100 μM). Within each condition, PT was more potent than PZ and its effects were partially mediated by peroxisome proliferator-activated receptor (PPAR)-γ (p 2-, or LPS + CoCl2-stimulated adipocytes, PT reduced mRNA expression and/or secreted protein levels of inflammatory and macrophage chemotactic adipokines, and increased that of anti-inflammatory and angiogenic adipokines, which was consistent with reduced mRNA expression of M1 polarization markers and increased M2 markers in RAW 264.7 macrophages cultured in media collected from LPS + CoCl2-simulated adipocytes (p 2-stimulated adipocytes, PT reduced reactive oxygen species accumulation, nuclear factor-κB activation, and apoptotic protein expression (p < 0.05). Overall, apple flavonols attenuate critical aspects of the obese AT phenotype.

Keywords