Heliyon (Mar 2020)

Temperature-dependent formulation of a hydrogel based on Hyaluronic acid-polydimethylsiloxane for biomedical applications

  • Maryam Khaleghi,
  • Ebrahim Ahmadi,
  • Mahvash Khodabandeh Shahraki,
  • Farhang Aliakbari,
  • Dina Morshedi

Journal volume & issue
Vol. 6, no. 3
p. e03494

Abstract

Read online

Hyaluronic acid (HA), as a safe biomaterial with minimal immunogenicity, is being employed in a broad range of medical applications. Since unmodified HA has a high potential for biodegradation in the physiological condition, herein, an HA-based cross-linked hydrogel was formulated using polydimethylsiloxane-diglycidyl ether terminated (PDMS-DG) via epoxide-OH reaction. The formation of HA-PDMS hydrogel was confirmed using FTIR, NMR, and FESEM. Temperature demonstrated a critical role in the physicochemical properties of the final products. Gel-37, which formed at 37 °C, had a higher modification degree (MD) and more stability against hyaluronidase and oxidative stress than the hydrogel formulated at 25 °C (Gel-25). In addition, the swelling ratio, roughness, and porous network topology of Gel-25 and Gel-37 were different. The rheology measurement indicated that HA-PDMS hydrogel had a stable viscoelastic character. The hydrogel was also biocompatible, non-cytotoxic, and considerably stable during 7-months storage. Overall, various determined parameters confirmed that HA-PDMS hydrogel is worth using in different medical applications. Keywords: Hyaluronic acid; Polydimethylsiloxane-diglycidyl ether terminated; Hydrogels; Long-term stability; Viscoelastic behavior; Biocompatibility.

Keywords