npj Parkinson's Disease (Jun 2023)

Synaptic mechanisms underlying onset and progression of memory deficits caused by hippocampal and midbrain synucleinopathy

  • Attilio Iemolo,
  • Maria De Risi,
  • Nadia Giordano,
  • Giulia Torromino,
  • Cristina Somma,
  • Diletta Cavezza,
  • Martina Colucci,
  • Maria Mancini,
  • Antonio de Iure,
  • Rocco Granata,
  • Barbara Picconi,
  • Paolo Calabresi,
  • Elvira De Leonibus

DOI
https://doi.org/10.1038/s41531-023-00520-1
Journal volume & issue
Vol. 9, no. 1
pp. 1 – 15

Abstract

Read online

Abstract Cognitive deficits, including working memory, and visuospatial deficits are common and debilitating in Parkinson’s disease. α-synucleinopathy in the hippocampus and cortex is considered as the major risk factor. However, little is known about the progression and specific synaptic mechanisms underlying the memory deficits induced by α-synucleinopathy. Here, we tested the hypothesis that pathologic α-Synuclein (α-Syn), initiated in different brain regions, leads to distinct onset and progression of the pathology. We report that overexpression of human α-Syn in the murine mesencephalon leads to late onset memory impairment and sensorimotor deficits accompanied by reduced dopamine D1 expression in the hippocampus. In contrast, human α-Syn overexpression in the hippocampus leads to early memory impairment, altered synaptic transmission and plasticity, and decreased expression of GluA1 AMPA-type glutamate receptors. These findings identify the synaptic mechanisms leading to memory impairment induced by hippocampal α-synucleinopathy and provide functional evidence of the major neuronal networks involved in disease progression.