Regulation of glucose metabolism: Effects on oocyte, preimplantation embryo, assisted reproductive technology and embryonic stem cell
Yu-Ying Xiong,
Hai-Ying Zhu,
Ruo-Jin Shi,
Yun-Feng Wu,
Yong Fan,
Long Jin
Affiliations
Yu-Ying Xiong
Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
Hai-Ying Zhu
Department of Reproductive Health and Infertility, Guangdong Women and Children Hospital, Guangzhou, 511400, China
Ruo-Jin Shi
Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
Yun-Feng Wu
Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
Yong Fan
Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China; Corresponding author.
Long Jin
Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China; Corresponding author.
Glucose is a major energy substrate for cellular life activities, and its metabolic pathways include glycolysis, the pentose phosphate pathway, the hexosamine biosynthesis pathway, and the polyol pathway. Here, we review the glucose uptake pathways, metabolic characteristics, glucose transport, glucose metabolism-related enzymes, and biological importance in mammalian oocyte maturation, early embryo development, and embryonic stem cell proliferation and differentiation. Moreover, the interrelationships among glucose metabolism, female reproduction-related diseases and assisted reproductive technologies are focused. In addition, we review a number of analytical methodologies with the intention to integrate a multi-tiered strategy that encompasses cutting-edge metabolomics, artificial intelligence, epigenetics, and morphological assessments, setting the stage for a pivotal approach to cultivating high-caliber embryos in the future.