بهداشت و ایمنی کار (Oct 2024)

Evaluation of Different Wipes’ Performance for Sampling the Antineoplastic Drug 5-Fluorouracil from Various Surfaces

  • Zahra Beigzadeh,
  • Farideh Golbabaei,
  • Mahdi Niknam Shahrak,
  • Fariborz Omidi,
  • Jamaleddin Shahtaheri

Journal volume & issue
Vol. 14, no. 3
pp. 521 – 539

Abstract

Read online

Introduction: The use of antineoplastic drugs in cancer treatment, while essential, poses risks due to their non-selective action on both cancerous and healthy cells. Assessing and controlling environmental contamination with these drugs in workplaces is crucial. This study aimed to evaluate the efficacy of various commercial wipes in sampling the antineoplastic drug 5-fluorouracil from surfaces to develop standardized sampling methods. Material and Methods: This study assessed the efficiency of commonly used commercial wipes (Whatman cellulose filter, cotton swab, Millipore™ filter, sterile gauze pad, and alcohol pad) for sampling 5-fluorouracil from different surfaces (stainless steel, vinyl, and ceramic). The sampling area was defined using disposable cardboard frames, and 1000 microliters of a 1 µg/mL 5-fluorouracil solution were applied to each surface. Sampling and extraction were conducted following NIOSH guidelines. The frame dimensions were 10 × 10 cm, limiting the sampling area to 100 square centimeters. Analysis was performed using high-performance liquid chromatography (HPLC), and results were analyzed using Prism GraphPad software, version 8. Results: The sampling efficiency varied across wipes and surfaces, ranging from 11.2% to 86.2%. Alcohol pads showed the highest efficiency on stainless steel surfaces, while the Millipore™ filter had the lowest efficiency across all surfaces. Extraction efficiency ranged from 43.8% to 98.8%, with alcohol pads providing the highest recovery. Sample stability was maintained over 15 days. Conclusion: Alcohol pads were most effective in collecting and extracting 5-fluorouracil, particularly from hard, smooth surfaces such as stainless steel and ceramic. These findings may improve sampling methods, thereby reducing occupational exposure to antineoplastic drugs. Further research on different wipes and extraction parameters could refine drug analysis techniques.

Keywords