Journal of Inequalities and Applications (Jul 2016)

Relations between generalized von Neumann-Jordan and James constants for quasi-Banach spaces

  • Young Chel Kwun,
  • Qaisar Mehmood,
  • Waqas Nazeer,
  • Absar Ul Haq,
  • Shin Min Kang

DOI
https://doi.org/10.1186/s13660-016-1115-z
Journal volume & issue
Vol. 2016, no. 1
pp. 1 – 10

Abstract

Read online

Abstract Let C N J ( B ) $\mathcal{C}_{NJ} ( \mathcal{B} )$ and J ( B ) $J ( \mathcal{B} )$ be the generalized von Neumann-Jordan and James constants of a quasi-Banach space B $\mathcal{B}$ , respectively. In this paper we shall show the relation between C N J ( B ) $\mathcal {C}_{NJ} ( \mathcal{B} )$ , J ( B ) $J ( \mathcal{B} )$ , and the modulus of convexity. Also, we show that if B $\mathcal{B}$ is not uniform non-square then J ( B ) = C N J ( B ) = 2 $J ( \mathcal{B} )=\mathcal{C}_{NJ} ( \mathcal{B} )=2$ . Moreover, we give an equivalent formula for the generalized von Neumann-Jordan constant.

Keywords