Algorithms (Mar 2023)

A Novel Short-Memory Sequence-Based Model for Variable-Length Reading Recognition of Multi-Type Digital Instruments in Industrial Scenarios

  • Shenghan Wei,
  • Xiang Li,
  • Yong Yao,
  • Suixian Yang

DOI
https://doi.org/10.3390/a16040192
Journal volume & issue
Vol. 16, no. 4
p. 192

Abstract

Read online

As a practical application of Optical Character Recognition (OCR) for the digital situation, the digital instrument recognition is significant to achieve automatic information management in real-industrial scenarios. However, different from the normal digital recognition task such as license plate recognition, CAPTCHA recognition and handwritten digit recognition, the recognition task of multi-type digital instruments faces greater challenges due to the reading strings are variable-length with different fonts, different spacing and aspect ratios. In order to overcome this shortcoming, we propose a novel short-memory sequence-based model for variable-length reading recognition. First, we involve shortcut connection strategy into traditional convolutional structure to form a feature extractor for capturing effective features from characters with different fonts of multi-type digital instruments images. Then, we apply an RNN-based sequence module, which strengthens short-distance dependencies while reducing the long-distance trending memory of the reading string, to greatly improve the robustness and generalization of the model for invisible data. Finally, a novel short-memory sequence-based model consisting of a feature extractor, an RNN-based sequence module and the CTC, is proposed for variable-length reading recognition of multi-type digital instruments. Experimental results show that this method is effective on variable-length instrument reading recognition task, especially for invisible data, which proves that our method has outstanding generalization and robustness in real-industrial applications.

Keywords