Buildings (Apr 2023)

Investigation of Circular Hollow Concrete Columns Reinforced with GFRP Bars and Spirals

  • Afaq Ahmad,
  • Alireza Bahrami,
  • Omar Alajarmeh,
  • Nida Chairman,
  • Muhammad Yaqub

DOI
https://doi.org/10.3390/buildings13041056
Journal volume & issue
Vol. 13, no. 4
p. 1056

Abstract

Read online

Glass fiber-reinforced polymer (GFRP) reinforcements are useful alternatives to traditional steel bars in concrete structures, particularly in vertical structural elements such as columns, as they are less prone to corrosion, and impart increasing strength and endurance of buildings. There is limited research on the finite element analysis (FEA) of the structural behavior of hollow glass fiber-reinforced polymer reinforced concrete (GFRPRC) columns. The hollow portion can be used for the service duct and for reducing the self-weight of the members. Numerical analysis of the compressive response of circular hollow concrete columns reinforced with GFRP bars and spirals is performed in this study. This article aims to investigate the axial behavior of hollow GFRP concrete columns and compare it with that of solid steel reinforced concrete (RC) columns as well as hollow steel RC columns. The Abaqus software is used to construct finite element models. After calibration of modeling using an experimental test result as a control model, a parametric study is conducted. The columns with the same geometry, loading, and boundary conditions are analyzed in the parametric study. It is resulted that the hollow GFRP concrete columns provide a greater confinement effect than the solid steel RC columns. The average variation in the ultimate axial load-carrying capacities of the experimental results, from that of the FEA values, is noted to be only 3.87%, while the average difference in the corresponding deformations is 7.08%. Moreover, the hollow GFRP concrete columns possess greater axial load and deformation capacities compared with the solid steel RC columns.

Keywords