Frontiers in Microbiology (Sep 2012)

Use of functional gene arrays for elucidating in situ biodegradation

  • Joy D. Van Nostrand,
  • Zhili eHe,
  • Jizhong eZhou,
  • Jizhong eZhou,
  • Jizhong eZhou

DOI
https://doi.org/10.3389/fmicb.2012.00339
Journal volume & issue
Vol. 3

Abstract

Read online

Microarrays have revolutionized the study of microbiology by providing a high-throughput method for examining thousands of genes with a single test and overcome the limitations of many culture-independent approaches. Functional gene arrays (FGA) probe a wide range of genes involved in a variety of functions of interest to microbial ecology (e.g., carbon degradation, N-fixation, metal resistance) from many different microorganisms, cultured and uncultured. The most comprehensive FGA to date is the GeoChip array, which targets tens of thousands of genes involved in the geochemical cycling of carbon, nitrogen, phosphorus, and sulphur, metal resistance and reduction, energy processing, antibiotic resistance and contaminant degradation as well as phylogenetic information (gyrB). Since the development of GeoChips, many studies have been performed using this FGA and have shown it to be a powerful tool for rapid, sensitive and specific examination of microbial communities in a high-throughput manner. As such, the GeoChip is well-suited for linking geochemical processes with microbial community function and structure. This technology has been used successfully to examine microbial communities before, during and after in situ bioremediation at a variety of contaminated sites. These studies have expanded our understanding of biodegradation and bioremediation processes and the associated microorganisms and environmental conditions responsible. This review provides an overview of FGA development with a focus on the GeoChip and highlights specific GeoChip studies involving in situ bioremediation.

Keywords