BMC Plant Biology (Jan 2023)

QTL mapping and candidate gene analysis for yield and grain weight/size in Tartary buckwheat

  • Ruiyuan Li,
  • Zhengfeng Chen,
  • Ran Zheng,
  • Qingfu Chen,
  • Jiao Deng,
  • Hongyou Li,
  • Juan Huang,
  • Chenggang Liang,
  • Taoxiong Shi

DOI
https://doi.org/10.1186/s12870-022-04004-x
Journal volume & issue
Vol. 23, no. 1
pp. 1 – 16

Abstract

Read online

Abstract Background Grain weight/size influences not only grain yield (GY) but also nutritional and appearance quality and consumer preference in Tartary buckwheat. The identification of quantitative trait loci (QTLs)/genes for grain weight/size is an important objective of Tartary buckwheat genetic research and breeding programs. Results Herein, we mapped the QTLs for GY, 1000-grain weight (TGW), grain length (GL), grain width (GW) and grain length–width ratio (L/W) in four environments using 221 recombinant inbred lines (XJ-RILs) derived from a cross of 'Xiaomiqiao × Jinqiaomai 2'. In total, 32 QTLs, including 7 for GY, 5 for TGW, 6 for GL, 11 for GW and 3 for L/W, were detected and distributed in 24 genomic regions. Two QTL clusters, qClu-1-3 and qClu-1-5, located on chromosome Ft1, were revealed to harbour 7 stable major QTLs for GY (qGY1.2), TGW (qTGW1.2), GL (qGL1.1 and qGL1.4), GW (qGW1.7 and qGW1.10) and L/W (qL/W1.2) repeatedly detected in three and above environments. A total of 59 homologues of 27 known plant grain weight/size genes were found within the physical intervals of qClu-1-3 and qClu-1-5. Six homologues, FtBRI1, FtAGB1, FtTGW6, FtMADS1, FtMKK4 and FtANT, were identified with both non-synonymous SNP/InDel variations and significantly differential expression levels between the two parents, which may play important roles in Tatary buckwheat grain weight/size control and were chosen as core candidate genes for further investigation. Conclusions Two stable major QTL clusters related to grain weight/size and six potential key candidate genes were identified by homology comparison, SNP/InDel variations and qRT‒qPCR analysis between the two parents. Our research provides valuable information for improving grain weight/size and yield in Tartary buckwheat breeding.

Keywords