Revista de Metalurgia (Apr 2023)
Experimental-numerical analysis to determine the efficiency of industrial lubricants in wire drawing process
Abstract
Drawing is a manufacturing process that consists of indirect deformation by pulling the material through a tool with a conical geometry. The process is usually performed at room temperature (cold forming), so the selection of effective lubricants is critical. If lubrication is inadequate, there is a high risk that both, tool and the manufactured wire, will fail. In this study, annealed AISI 1020 steel rods were drawn and the effectiveness of three different industrial lubricants was tested. During the process, the drawing force values were recorded and used to determine the friction coefficient that developed under each lubrication condition. Numerical simulations were performed to further understand the process. Based on the experimental and numerical results, qualitative and quantitative analysis were performed for each condition. Among the different lubricants used in this study, zinc stearate showed the lowest value for drawing force, 18.8 kN, followed by Lub A and B with values of 20 kN and 20.6 kN, respectively. The numerical models showed excellent approximation to the force values determined in the tests. The values for the coefficient of friction obtained by both the numerical analysis and the empirical model indicate that zinc stearate has the highest lubricating effect among the lubricants focused on this study.
Keywords