Microbial Cell Factories (Dec 2019)

Enhanced production of recombinant serratiopeptidase in Escherichia coli and its characterization as a potential biosimilar to native biotherapeutic counterpart

  • Vishal Srivastava,
  • Shivam Mishra,
  • Tapan K. Chaudhuri

DOI
https://doi.org/10.1186/s12934-019-1267-x
Journal volume & issue
Vol. 18, no. 1
pp. 1 – 15

Abstract

Read online

Abstract Background Serratia marcescens, a Gram-negative nosocomial pathogen secretes a 50 kDa multi-domain zinc metalloprotease called serratiopeptidase. Broad substrate specificity of serratiopeptidase makes it suitable for detergent and food processing industries The protein shows potent anti-inflammatory, anti-edemic, analgesic, antibiofilm activity and sold as an individual or fixed-dose enteric-coated tablets combined with other drugs. Although controversial, serratiopeptidase as drug is used in the treatment of chronic sinusitis, carpal tunnel syndrome, sprains, torn ligaments, and postoperative inflammation. Since the native producer of serratiopeptidase is a pathogenic microorganism, the current production methods need to be replaced by alternative approaches. Heterologous expression of serratiopeptidase in E. coli was tried before but not found suitable due to the limited yield, and other expression related issues due to its inherent proteolytic activity such as cytotoxicity, cell death, no expression, minimal expression, or inactive protein accumulation. Results Recombinant expression of mature form serratiopeptidase in E. coli seems toxic and resulted in the failure of transformation and other expression related issues. Although E. coli C43(DE3) cells, express protein correctly, the yield was compromised severely. Optimization of protein expression process parameters such as nutrient composition, induction point, inducer concentration, post-induction duration, etc., caused significant enhancement in serratiopeptidase production (57.9 ± 0.73% of total cellular protein). Expressed protein formed insoluble, enzymatically inactive inclusion bodies, and gave 40–45 mg/l homogenous (> 98% purity) biologically active and conformationally similar serratiopeptidase to the commercial counterpart upon refolding and purification. Conclusion Expression of mature serratiopeptidase in E. coli C43(DE3) cells eliminated the protein expression associated with toxicity issues. Further optimization of process parameters significantly enhanced the overexpression of protein resulting in the higher yield of pure and functionally active recombinant serratiopeptidase. The biological activity and conformational features of recombinant serratiopeptidase were very similar to the commercially available counterpart suggesting it-a potential biosimilar of therapeutic and industrial relevance.

Keywords