Nanotechnology Reviews (Dec 2016)

Phytosynthesis of silver nanoparticles (AgNPs) using miracle fruit plant (Synsepalum dulcificum) for antimicrobial, catalytic, anticoagulant, and thrombolytic applications

  • Lateef Agbaje,
  • Akande Monsurat A.,
  • Azeez Musibau A.,
  • Ojo Sunday A.,
  • Folarin Bolaji I.,
  • Gueguim-Kana Evariste B.,
  • Beukes Lorika S.

DOI
https://doi.org/10.1515/ntrev-2016-0039
Journal volume & issue
Vol. 5, no. 6
pp. 507 – 520

Abstract

Read online

In the present work, we report the phytosynthesis of AgNPs mediated by leaf and seed extracts of Synsepalum dulcificum. The extracts catalyzed the formation of brown colloidal AgNPs, which stabilized in 10 min. The leaf and seed AgNPs yielded surface plasmon resonance at 440 and 438.5 nm, respectively. Prominent peaks at 3408, 2357, 2089, and 1639 cm−1 were recorded for leaf AgNPs, whereas 3404, 2368, 2081, and 1641 cm−1 were revealed for seed-mediated AgNPs from Fourier transform infrared data. These showed the involvement of phenolic compounds and proteins in the phytosynthesis. The particles were fairly spherical and crystalline in nature having size of 4–26 nm, with prominence of silver in the colloidal solutions. The particles inhibited the growth of drug-resistant strains of Pseudomonas aeruginosa and Klebsiella granulomatis with zone of inhibition of 11–24 mm. Also, the phytosynthesized AgNPs completely inhibited the growth of Aspergillus flavus and Aspergillus niger. In addition, by using 20 μg/ml of AgNPs, malachite green was degraded by approximately 80% in 24 h. Similarly, the particles displayed blood anticoagulant activities as well as achieved thrombolysis. The AgNPs can be explored for biomedical and catalytic applications. The report is the first on the eco-friendly synthesis of nanoparticles by S. dulcificum.

Keywords