Ecology and Evolution (Mar 2013)

Ice‐dependent winter survival of juvenile Atlantic salmon

  • R. D. Hedger,
  • T. F. Næsje,
  • P. Fiske,
  • O. Ugedal,
  • A. G. Finstad,
  • E. B. Thorstad

DOI
https://doi.org/10.1002/ece3.481
Journal volume & issue
Vol. 3, no. 3
pp. 523 – 535

Abstract

Read online

Abstract Changes in snow and ice conditions are some of the most distinctive impacts of global warming in cold temperate and Arctic regions, altering the environment during a critical period for survival for most animals. Laboratories studies have suggested that reduced ice cover may reduce the survival of stream dwelling fishes in Northern environments. This, however, has not been empirically investigated in natural populations in large rivers. Here, we examine how the winter survival of juvenile Atlantic salmon in a large natural river, the River Alta (Norway, 70°N), is affected by the presence or absence of surface ice. Apparent survival rates for size classes corresponding to parr and presmolts were estimated using capture‐mark‐recapture and Cormack‐Jolly‐Seber models for an ice‐covered and an ice‐free site. Apparent survival (Φ) in the ice‐covered site was greater than in the ice‐free site, but did not depend on size class (0.64 for both parr and presmolt). In contrast, apparent survival in the ice‐free site was lower for larger individuals (0.33) than smaller individuals (0.45). The over‐winter decline in storage energy was greater for the ice‐free site than the ice‐covered site, suggesting that environmental conditions in the ice‐free site caused a strong depletion in energy reserves likely affecting survival. Our findings highlight the importance of surface ice for the winter survival of juvenile fish, thus, underpinning that climate change, by reducing ice cover, may have a negative effect on the survival of fish adapted to ice‐covered habitats during winter.

Keywords