IEEE Access (Jan 2019)

State-of-Charge Estimation of Lithium-Ion Batteries via Long Short-Term Memory Network

  • Fangfang Yang,
  • Xiangbao Song,
  • Fan Xu,
  • Kwok-Leung Tsui

DOI
https://doi.org/10.1109/ACCESS.2019.2912803
Journal volume & issue
Vol. 7
pp. 53792 – 53799

Abstract

Read online

Accurate state-of-charge (SOC) estimation is critical for driving range prediction of electric vehicles and optimal charge control of batteries. In this paper, a stacked long short-term memory network is proposed to model the complex dynamics of lithium iron phosphate batteries and infer battery SOC from current, voltage, and temperature measurements. The proposed network is trained and tested using data collected from the dynamic stress test, US06 test, and federal urban driving schedule. The performance on SOC estimation is evaluated regarding tracking accuracy, computation time, robustness against unknown initial states, and compared with results from the model-based filtering approach (unscented Kalman filter). Moreover, different training and testing data sets are constructed to test its robustness against varying loading profiles. The experimental results show that the proposed network well captures the nonlinear correlation between SOC and measurable signals and provides better tracking performance than the unscented Kalman filter. In case of inaccurate initial SOCs, the proposed network presents quick convergence to the true SOC, with root mean square errors within 2% and mean average errors within 1%. Moreover, the estimation time at each time step is sub-millisecond, making it appropriate for real-time applications.

Keywords