Developmental Cognitive Neuroscience (Dec 2024)

Encoding models for developmental cognitive computational neuroscience: Promise, challenges, and potential

  • Tomoya Nakai,
  • Charlotte Constant-Varlet,
  • Jérôme Prado

Journal volume & issue
Vol. 70
p. 101470

Abstract

Read online

Cognitive computational neuroscience has received broad attention in recent years as an emerging area integrating cognitive science, neuroscience, and artificial intelligence. At the heart of this field, approaches using encoding models allow for explaining brain activity from latent and high-dimensional features, including artificial neural networks. With the notable exception of temporal response function models that are applied to electroencephalography, most prior studies have focused on adult subjects, making it difficult to capture how brain representations change with learning and development. Here, we argue that future developmental cognitive neuroscience studies would benefit from approaches relying on encoding models. We provide an overview of encoding models used in adult functional magnetic resonance imaging research. This research has notably used data with a small number of subjects, but with a large number of samples per subject. Studies using encoding models also generally require task-based neuroimaging data. Though these represent challenges for developmental studies, we argue that these challenges may be overcome by using functional alignment techniques and naturalistic paradigms. These methods would facilitate encoding model analysis in developmental neuroimaging research, which may lead to important theoretical advances.

Keywords