Geocarto International (Jan 2024)

Characterization of landuse and landcover dynamics and their impact on runoff generation patterns in dam catchments of Northern Ghana

  • Etienne Umukiza,
  • Felix K. Abagale,
  • Thomas Apusiga Adongo

DOI
https://doi.org/10.1080/10106049.2024.2335247
Journal volume & issue
Vol. 39, no. 1

Abstract

Read online

AbstractLanduse alteration is a critical factor that exerts influence over hydrological mechanisms and the oversight of water resources across the globe. Northern Ghana is characterized by erratic rainfall, leading to the intense construction of small dams and dugouts. This study investigated historical landuse/cover (LULC) changes and physical factors associated with surface runoff generation within eight (8) sub-catchments namely; Guno, Gbahali, Sambu, Duago, Denugo, Kwisini, Sandu, and Nyeko, with areas of 29.5, 110, 38.5, 106.04, 67.81, 2.59, 10.56 and 120.65 km2, respectively, located in four (4) regions of northern Ghana. For LULC change detection, historical satellite imagery and geospatial data were used with the aid of remote sensing and applying supervised maximum likelihood classification to Landsat images of 1995, 2005, 2015, and 2023. Runoff factors and depths were identified based on LULC classes, hydrologic soil groups, and precipitation conditions prevailing in the areas, based on the curve number (CN) method. With regards to LULC, the results from the overall analysis gave an insight into the rampant conversion, where grassland/mix vegetation witnessed significant declines, with decreases ranging from 150 to 395.25% in different catchments. Agricultural and arable lands emerged as the dominant landuse category, indicating a remarkable expansion of 11.61–51.17 km2, from 1995 to 2023 respectively, followed by built-up areas. While grassland decreased in all catchments over the same period, in some places, open tree (savannah woodland) increased, which confirmed the implementation of the afforestation policy. The CN values offered essential insights into the hydrological characteristics of each catchment. In addition to the impact of LULC and watershed characteristics on runoff, the observed variations in runoff patterns can be attributed to interannual variability in total annual precipitation which is critical driver of runoff. The findings hold significant importance for developing effective strategies and integrated watershed management policies to contribute to better water resource management and inform sustainable landuse planning in the face of changing environmental conditions.

Keywords