Sustainable Operations and Computers (Jan 2022)
Prediction of recommendations for employment utilizing machine learning procedures and geo-area based recommender framework
Abstract
With increment in the utilization of Internet, the pace of increment of social networks is getting ubiquitous in recent years. This paper focuses on the job portal websites. The research objective of this paper is that the recommender framework takes the abilities from the website and makes suggestion to the candidates with the jobs whose descriptions are coordinating with their profiles the most. This paper additionally presents a short presentation on recommender framework and talks about different categories of this framework. From the start, information is cleaned by expelling the filthy information as extra space and duplicates. Then the job recommendations are made to the target applicants on the basis of their preferences. It utilizes different Machine Learning procedures which results show that Random Forest Classifier (RFC) gives the most noteworthy expectation accuracy when contrasted with different procedures. Finally, the optimization technique is utilized to get the most exact outcome. The advantage of recommender framework in career orientation is expressed. Geo-area based recommendation framework is utilized to find the organization's position which can assist the ideal applicants with reaching their destination. This examination shows that the utilization of job recommender system can assist with improving the recommendation of appropriate employment for work searchers.