Agronomy (Apr 2021)

Regulation of Osmotic Balance and Increased Antioxidant Activities under Heat Stress in <i>Abelmoschus esculentus</i> L. Triggered by Exogenous Proline Application

  • Rashid Hussain,
  • Choudhary Muhammad Ayyub,
  • Muhammad Rashid Shaheen,
  • Sahar Rashid,
  • Muhammad Nafees,
  • Saif Ali,
  • Madiha Butt,
  • Mujahid Ali,
  • Ambreen Maqsood,
  • Sajid Fiaz,
  • Sunny Ahmar,
  • Tahir Mahmood,
  • Freddy Mora-Poblete

DOI
https://doi.org/10.3390/agronomy11040685
Journal volume & issue
Vol. 11, no. 4
p. 685

Abstract

Read online

Keeping in view the yield losses instigated by heat stress in several crops, we carried out an experiment to explore the curative effect of exogenous applications of proline on the morpho-physiological, biochemical, and water-related attributes of okra genotypes under high-temperature stress (controlled conditions). Four contrasting genotypes C1, C2, C3, and C4 heat tolerant and heat sensitive genotypes were selected from a diverse panel of okra genotypes (n = 100) to examine plant responses to high-temperature stress and exogenous application of proline. Four-week-old seedlings were subjected to heat stress by gradually increasing the temperature of a growth chamber from 28/22 °C to 45/35 °C (day/night) and sprayed with an optimized proline concentration 2.5 mM. The experiment consisted of a factorial arrangement of treatments in a completely randomized design. The results showed that there were maximum increases in shoot length (32.7%), root length (58.9%), and shoot fresh (85.7%). The quantities of leaves per plant were increased by 52.9%, 123.6%, 82.5%, and 62.2% in C1, C2, C3, and C4 after proline application. On the other hand, only root fresh weight decreased in all genotypes after proline application by 23.1%, 20%, 266.7%, and 280.8% (C1, C2, C3, C4). A lower leaf temperature of 27.72 °C, minimum transpiration of 3.29 mmol m−2 s−1, maximum photosynthesis of 3.91 μmol m−2 s−1, and a maximum water use efficiency of 1.20 μmol CO2 mmol H2O were recorded in the genotypes C2, C1, C3, and C4, respectively. The highest enzymatic activity of superoxide dismutase, peroxidase and catalase were 14.88, 0.31, and 0.15 U mg-protein in C2, C1, and C3, respectively. Maximum leaf proline, glycinebetaine, total free amino acids, and chlorophyll content 3.46 mg g−1, 4.02 mg g−1, 3.46 mg g−1, and 46.89 (in C2), respectively, due to foliar applications of proline. Another important finding was that heat tolerance in okra was highly linked highly linked to genotypes’ genetic potential, having more water use efficiency, enzymatic activities, and physio-biochemical attributes under the foliar applications of proline.

Keywords