Biology Direct (Nov 2019)
Environmental metagenome classification for constructing a microbiome fingerprint
Abstract
Abstract Background Nowadays, not only are single genomes commonly analyzed, but also metagenomes, which are sets of, DNA fragments (reads) derived from microbes living in a given environment. Metagenome analysis is aimed at extracting crucial information on the organisms that have left their traces in an investigated environmental sample.In this study we focus on the MetaSUB Forensics Challenge (organized within the CAMDA 2018 conference) which consists in predicting the geographical origin of metagenomic samples. Contrary to the existing methods for environmental classification that are based on taxonomic or functional classification, we rely on the similarity between a sample and the reference database computed at a reads level. Results We report the results of our extensive experimental study to investigate the behavior of our method and its sensitivity to different parameters. In our tests, we have followed the protocol of the MetaSUB Challenge, which allowed us to compare the obtained results with the solutions based on taxonomic and functional classification. Conclusions The results reported in the paper indicate that our method is competitive with those based on taxonomic classification. Importantly, by measuring the similarity at the reads level, we avoid the necessity of using large databases with annotated gene sequences. Hence our main finding is that environmental classification of metagenomic data can be proceeded without using large databases required for taxonomic or functional classification. Reviewers This article was reviewed by Eran Elhaik, Alexandra Bettina Graf, Chengsheng Zhu, and Andre Kahles.
Keywords