Remote Sensing (Mar 2022)
A Study on the Long-Term Variations in Mass Extinction Efficiency Using Visibility Data in South Korea
Abstract
Fine particulate matter (PM) release is regulated by environmental policies in most countries. This study investigated long–term trends in the mass extinction efficiency (Qe) of aerosols in Northeast Asia. For this purpose, the Qe was calculated using visibility, PM2.5 recorded between 2015 and 2020, and PM10 recorded between 2001 and 2020 at eight Korean sites. The Qe of PM10 (Qe,10) showed an increasing trend with 0.06~0.22 (m2/g)/yr in seven cities except for Jeju. The Qe of PM2.5 (Qe,2.5) also showed an increasing trend with 0.28–2.47 (m2/g)/yr in all cities. In this study, PM10 and PM2.5, were divided into low, moderate, and high concentrations, and the Qe value change by year was examined. Qe,10 showed a tendency to decrease at low concentrations (19–21 μg/m3). However, at moderate (69–71 μg/m3) and high concentrations (139–141 μg/m3), Qe,10 increased in most regions. Qe,2.5 showed an increasing trend at low concentration (9–11 μg/m3), moderate concentration (29–31 μg/m3), and high concentration (69–71 μg/m3), except for Suwon and Pohang, where data were insufficient for analysis. Both Qe,10 and Qe,2.5 showed an increasing trend. The increase in Qe indicated that the visibility-impairing effect of PM can increase even if the same concentration of PM is present. The visibility-impairing effects of PM vary based on the composition, size and other characteristics of the particles in the atmosphere at a given point in time and not simply the quantity of particles. This means that reducing the quantity of particles does not reliably produce a proportionate improvement in visibility. Air quality policies must take the variable nature of PM particles and their effect on visibility into account so that more consistent improvements in air quality can be achieved.
Keywords