Journal of Water and Climate Change (Sep 2021)

Application of machine learning algorithms for flood susceptibility assessment and risk management

  • R. Madhuri,
  • S. Sistla,
  • K. Srinivasa Raju

DOI
https://doi.org/10.2166/wcc.2021.051
Journal volume & issue
Vol. 12, no. 6
pp. 2608 – 2623

Abstract

Read online

Assessing floods and their likely impact in climate change scenarios will enable the facilitation of sustainable management strategies. In this study, five machine learning (ML) algorithms, namely (i) Logistic Regression, (ii) Support Vector Machine, (iii) K-nearest neighbor, (iv) Adaptive Boosting (AdaBoost) and (v) Extreme Gradient Boosting (XGBoost), were tested for Greater Hyderabad Municipal Corporation (GHMC), India, to evaluate their clustering abilities to classify locations (flooded or non-flooded) for climate change scenarios. A geo-spatial database, with eight flood influencing factors, namely, rainfall, elevation, slope, distance from nearest stream, evapotranspiration, land surface temperature, normalised difference vegetation index and curve number, was developed for 2000, 2006 and 2016. XGBoost performed the best, with the highest mean area under curve score of 0.83. Hence, XGBoost was adopted to simulate the future flood locations corresponding to probable highest rainfall events under four Representative Concentration Pathways (RCPs), namely, 2.6, 4.5, 6.0 and 8.5 along with other flood influencing factors for 2040, 2056, 2050 and 2064, respectively. The resulting ranges of flood risk probabilities are predicted as 39–77%, 16–39%, 42–63% and 39–77% for the respective years. HIGHLIGHTS Comparative assessment of ML algorithms to identify the most suitable algorithm for Greater Hyderabad Municipal Corporation (GHMC), India, to classify locations as either flooded or non-flooded.; The most reliable ML algorithm (in this case XGBoost) is employed to predict flood risk probabilities for extreme rainfall situations in four different RCPs in association with other flood influencing factors.;

Keywords